
1

Rate Monotonic Analysis

The solution to multitasking problems?

Jim Cooling
Lindentree Associates/Loughborough University

Abstract: A major issue in the design of real-time multitasking systems is that of timing
correctness. Signal sampling, control calculations, output commands, etc.: all must be done
in a deterministic way to ensure systems meet their performance objectives. In recent years
one technique – Rate Monotonic Analysis (RMA) - has frequently been promoted as a way of
attaining these goals. Unfortunately the limitations of RMA haven’t always been as clearly
presented, which can lead to a somewhat over-optimistic belief in its effectiveness.

This paper sets out to describe the background and origins of RMA, highlighting in
particular the assumptions underlying its theoretical development. The impact of these
assumptions on the performance of real-time (especially hard, fast) systems is discussed in
some detail. From this it can be seen that fundamental extensions and changes must be made
to RMA scheduling techniques to cope with demanding performance requirements.
Moreover, for anything in the least bit complex, tool support is essential to fully examine all
aspects of system behaviour.

2

Rate Monotonic Analysis

The solution to multitasking problems?

1. Setting the scene.

If you look at the software structure of embedded microsystems of early days, certain
consistent patterns emerge. Routine low-level activities were performed by a continuous
single-loop background task, all other activities being controlled by interrupts. These
included functions executed at regular time intervals (synchronous or periodic tasks) and
those done on demand (asynchronous or aperiodic tasks). Examples of periodic tasks include
control loop calculations, data monitoring functions, display refreshing, etc. Aperiodic tasks
are generally used to deal with events whose occurrences are unpredictable (from a time
point of view that is), and, most important, require a fast response. Examples include
handling push-button commands (e.g. bomb release), dealing with alarm functions (fuel tank
flame detection, for instance) and protecting machinery systems (e.g. machinery running and
safety guard lifted). This software organization may be regarded as the poor man’s
multitasking structure.
 In developing the software for these systems the designer – and it frequently was a single
person - was presented with two major objectives. First, the system had to satisfy its
functional objectives, i.e. functional correctness. Second, it had to meet its timing
requirements, that is, timing or temporal correctness. In older (and in particular smaller)
embedded designs it wasn’t especially difficult to achieve functional correctness (this doesn’t
imply that it was by any means easy, however). Timing aspects, similarly, didn’t usually
produce major problems - provided the CPU had adequate spare processing capacity (a most
important proviso). The success of real-time embedded processor systems during the 70’s
and 80’s speaks for itself. However, in recent years, the trend in embedded systems is that
software has become larger, more complex and team-based. As a way of coping with this,
developers have increasingly turned to the use of multitasking techniques in place of simple
interrupt-driven structures. This, without a doubt, certainly simplified the task of
implementing large, complex systems; it also made it easier to produce designs which are
functionally correct. Unfortunately, the same cannot be said for timing correctness; if
anything the reverse is true. And that can raise serious problems for the designer of
embedded systems, especially the hard/fast ones.
 The core mechanism in a multitasking structure is the real-time kernel of the operating
systems. Its primary function is the safe and secure scheduling and dispatching of the
application tasks (performed by the ‘scheduler’). This it does in accordance with a set of
rules - an algorithm - called the scheduling policy. Where time behaviour is critical, we
would dearly love to employ a scheduler whose performance is fully predictable – a
deterministic scheduler. Now put yourself in the position of a software designer faced with
developing a new, technically-challenging, system which has significant performance (time)
demands. Moreover, it has been decided to base this on the use of a real-time operating
system. The key question is ‘what scheduling policy should be used to get the best
performance from the system?’. Well, if you were presented with the following comments
(taken from different technical articles relating to scheduling and schedulers in real-time
systems) I’m sure the decision would be an easy one:

3

‘Rate Monotonic Analysis (RMA) is a simple, practical mathematically sound way to
guarantee schedulability in real-time systems.’

‘RMA can guarantee if a system is schedulable with a given set of requirements’.

‘Thus this result means that the tasks will always meet their deadlines, regardless of how and
when the system schedules the task’.

Very impressive indeed; this looks like a sure-fire thing. But are things really so
straightforward? The answer, as we will see, is no.

2. The basics of rate monotonic analysis.

Rate monotonic analysis, RMA (known originally for 20 years as rate monotonic scheduling,
RMS) is based on the use of a priority pre-emptive task scheduling policy. Task priorities (P)
are set according to task periods (Tp), as follows:

P = 1/Tp

Thus the task with the shortest period has highest priority, followed by the task having the
second shortest period; following this is the one with the third shortest period, and so on to
the end one. Thus as we go down the set of tasks, periods always increase – a monotonic
sequence. A task which is ready to run can always pre-empt a lower priority running task.
 The milestone paper on rate monotonic work was that by Liu and Layland in 1973 [1].
They set out to answer the question of how a designer could guarantee, in a multitasking
scheme, to produce a feasible task schedule. To put it another way, to guarantee that the
system would meet its requirements within specified time frame(s). A key factor in their
calculations is that of processor utilization (U), defined by them to be the fraction of
processor time spent in the execution of the task set. Another term which needs to be
understood is that of ‘full utilization’. At first sight this could be interpreted as being the case
where the processor is fully loaded (i.e. no spare capacity, U = 1.0). Not so, however, for rate
monotonic scheduling. Here it describes a very specific situation: where a given task
schedule is feasible but any increase in execution times leads to failure. We might, for
instance, find that only 80% of the processor time is spent executing tasks; yet any attempt to
use the spare capacity will cause task(s) to miss deadlines. Take it on trust that for a given
processor having:

• A fixed set of tasks and
• A fixed total computation time for all tasks.

the ‘full utilization’ figure is not a fixed value. It depends on individual task timings and the
relative activation time of tasks.

4

 Liu and Layland showed that in a system having n tasks, the lowest utilization figure for a
guaranteed feasible schedule is:

U = n (21/n – 1)

For example, with two tasks: U = 2 (21/2 – 1) = 2 (0.414) = 0.828 or 82.8%.

As n increases the value of U decreases, eventually having a value of 0.693 when n is
infinite. This means that if more than 69.3% of the processor time is spent executing tasks,
we may not meet our deadlines (i.e. there is no guarantee that the schedule is feasible). More
usefully put; a task set scheduled using RMS is guaranteed to be feasible provided its
utilization does not exceed 0.693.
 This seems fine; unfortunately the underlying assumptions of the theory contain a number
of major weaknesses where real-time systems are concerned. These are:

• A1: All tasks are periodic.
• A2: Tasks are independent and non-interacting (no precedence or exclusion relationships

are involved).
• A3: Task deadline and period are considered to be synonymous (that is, the task deadline

is the time at which it is next due to be re-run).
• A4: The execution time of each task is constant and doesn’t vary over time.
• A5: All tasks are equally important – criticality doesn’t enter the equation.
• A6: Aperiodic tasks are limited to initialization and error-recovery routines, and do not

have hard, critical deadlines.

Let us now look at how these factors impact on the performance of a multitasking system.

3. Periodic and independent tasks – a simple performance evaluation.

To see how rate monotonic scheduling works in practice, let us take an example of a simple
(somewhat idealistic) two-task system. The tasks have the following attributes:

Task Period (Tp) Computation Time (Tc) Priority
Task A 5 mSecs. 2 mSecs. 1 (highest)
Task B 10 mSecs 2 mSecs 2

The utilization bound for guaranteed schedulability is 82.8%; the actual utilization is

Tca/Tpa + Tcb/Tpb = 2/5 + 2/10 = 0.5 or 50%.

Thus the schedule is feasible, as demonstrated in fig.1.

5

Fig. 1 A simple rate monotonic schedule – Staggered activation of tasks

Observe that the times at which the tasks are activated are staggered. Task A begins
executing at time t = 0, completes at t = (0+2), is activated again at t = (0+5), and so on. Task
B begins executing at time t = (0+3), completes at t = (0+5), is activated again at t = (0+13),
etc. Clearly there is no problem with this schedule.
 Now consider the situation where both tasks are readied simultaneously, fig.2.

Fig. 2 A simple rate monotonic schedule –Simultaneous activation of tasks

At t = 0, although both tasks become ready (‘released’), only task A is executed by the
processor – it has highest priority. It finishes execution at t = (0+2), at which time Task B
begins executing (completing at t = (0+4)). Simultaneous release of all tasks represents the
worst case scheduling condition, but we’ve still managed to meet our scheduling objectives –
to meet the deadlines.
 Regrettably, the definition that period equals deadline is may not be acceptable in many
situations. To demonstrate this, take a new two-task example:

Task Period (Tp) Computation Time (Tc) Priority
Task A 5 mSecs. 2 mSecs. 1 (highest)
Task B 9 mSecs 2 mSecs 2

In the first example there was a simple integer relationship between the task periods. The
result is that, no matter when the tasks are activated, the pattern of their relationship (the

6

‘phasing’) remains constant. However, in the second case it is more complex; the phasing
changes over time, as shown in fig.3.

Fig. 3 A simple rate monotonic schedule – Task overlap

Here, at time t = 0, the processor begins to execute task A, completing at t = (0+2). Note that
as this task is the highest priority one, we can immediately mark all its running states on the
diagram.
 Task B starts to run at t = (0+3). In order to meet its deadlines it must have completed
successive executions and be ready to re-run at the following times:

Run 1 2 3 4 5
Deadline (0+12) (0+21) (0+30) (0+39) (0+48)

It can be seen that it finishes the first time at t = (0+5), well within its deadline. On its
second activation 9 mSec. later (at t = (0+12)), it commences as soon as task A finishes. It is
readied for the third time at t = (0+ 21) but unfortunately task 1 happens to be running. Only
at t = (0+22) can task B begin to run, completing at t = (0+24). The rest of the diagram is
self-explanatory, showing the relative shift in the phasing of the two tasks.
 In terms of the basic criteria of RMA the schedule is still a feasible one; task B always
completes before it is next due to run. But look how the changing time phasing of the tasks
has varied task B’s start and completion times. You can see that the time interval between
successive activations of task B follows the pattern 9, 10, 10, 7, 9, 10, 10, 7, 9 … when
nominally it is 9 mSecs. Observe that the actual time between B being readied and delivering
its results follows the pattern 2, 2, 3, 4, 4, 2, 2, 3, 4, 4, 2 … This variation is called jitter
(more commonly, task jitter is taken to mean variations in the task starting time).
 We need to question the significance or importance of jitter in the timing schedule. In
effect it depends on the application. For digital closed-loop control systems it may, as
pointed out by Rekasius [2], be very important. To quote: Intermittent computer
interruptions result in the deterioration of control quality and may even render the system
unstable. There are several reasons for the interruption in computer control …. If the
computer has not finished a more important t ask, the control law computation may be
postponed. So what can we do? One solution proposed by Sha and Goodenough [3] is as
follows: Jitter requirements are a special kind of deadline requirement. One way of meeting
an output jitter requirement using rate monotonic scheduling is to have a normal periodic
task compute a result and place it in a memory-mapped I/O buffer before it is time to send the

7

value. RM scheduling theorems can be used to ensure that the value is computed in time. A
hardware timer of the operating system clock interrupt handler routine can then initiate the
device I/O precisely at the required time. A similar approach can be used for input jitter
requirements. While this approach solves one problem it unfortunately introduces others in
terms of additional complexity and overheads. Only knowledge of the problem domain will
show whether the technique is an appropriate one.
 Now, what of the effect in the variation in the time before readying a task and have it
complete? In the first four activations of task B the problem is essentially limited that of
jitter in the starting times. For each case the actual elapsed time between the task being put
into the run state and completing execution (the response time) is 2 mSec. However, the fifth
activation is quite different. Here task B starts at t = (0+39) but is suspended after 1 mSec. It
resumes after task A completes, 2 mSec. later, finishing at t = (0+43), the response time being
4 mSec. What, we must ask, are the consequences of this effect? And are they truly serious?
 The behaviour just described can, in fact, produce at least three distinct problems: dead-
time effects in control systems, relative timing errors and loss of system functions. Even
worse, these are not mutually exclusive; all three can occur simultaneously. We’ll illustrate
these with a few simple scenarios, all relating to the scheduling of fig.3.
 Example 1: a fast closed-loop control system. Here the computation time is effectively a
dead-time in the loop; its effect must be taken into account when devising the control
algorithm, taking into account system dynamic behaviour and stability. But, as shown, on the
fifth activation, there is a 100% change in the dead-time. This will certainly have an adverse
effect on closed-loop performance and in extreme cases may lead to limit cycling or even
instability.
 Example 2: a process control system. When task B is activated it starts a chemical process,
monitoring the operation as it runs. Our design calls for us to measure a parameter (and act
on its value) at approximately 1.5 mSec. into the operation. All is fine for the first four runs
of the task. However, trouble starts on run five; the parameter will be measured at 3.5 (and
not 1.5) mSecs. from the start of task activation. Its value may well be significantly different
from that which pertained 2 mSecs. earlier. Subsequent processing could lead to
deterioration in the quality of the product, increased wastage or even physical damage.
 Example 3: a production engineering application. This involves the checking of
components as they move, at speed, through a conveyor system, fig.4(a).

8

Fig. 4 Example production engineering application

 Task B is concerned with an operation which looks for a component at a particular point in
time and – if one is present – diverts it to another transportation belt. The components arrive
at 9 mSec intervals (nominally) and take 1 mSec. to pass by the sensor. There are guaranteed
time bounds of ± 0.75 mSec. on arrival times, thus giving a measurement ‘window’ of 1.5
mSec. (fig.4(b)). We design the software having a total window of 2 mSec, where the mid-
point coincides with the nominally correct arrival time. Thus the nominal arrival times –
referring to fig.3 – are 4, 13, 22, 31, 40, 49, etc. With this in mind, take a look at the
operation of task B on its fifth activation, assuming that the component actually arrives at
(39+0.25). It will have passed out of detection range 1 mSec. later, at 40.25 mSecs.
Unfortunately this coincides with the period of time in which task B is suspended. The result
is that the component goes undetected.
 These simple examples highlight two factors which are significant in real-time embedded
systems:

• the time at which results are delivered and
• the criticality of operations.

We can deduce that, in this case, assumptions A1, A2 and A4 hold; clearly A3 and A5 don’t.
Moreover, from a practical point of view, we would have to use the worst-case (longest) task
times when forming the task schedule.
 There are various ways to deal with the problems raised by the failure of assumptions A3
and A5. But first one should check to see if any assumptions are invalidated. Criticality
assessment requires that you have a good, detailed correct knowledge of system operation. It
is important to decide early on if a task’s deadline and period can be taken to be synonymous.
For many applications there isn’t a problem if there is variation in actual deadlines. Take the
case of driving a non-latched alpha-numeric display panel. Provided a sensible update period
is maintained, changes in updating times can be tolerated – they won’t produce display
flicker. However in situations where timing is critical, the task schedule will need very
careful scrutiny.
 I hope you are beginning to appreciate the extent of the difficulty in producing a reliable
task schedule. Now extrapolate the discussion to a 10-task system, say. The effort involved
to achieve guaranteed schedulability will clearly be considerable, even where assumptions
A1, A2 and A4 are satisfied. And remember, so far we have assumed that our system consists
of independent tasks only.

4. Interacting tasks.

In real systems tasks are very unlikely to be independent, for three particular reasons:

• Synchronization of operations.

9

• Communication of information.
• Access to shared resources.

All can lead to so-called blocking conditions – one task being delayed by another one (or
worse still, being delayed by a number of tasks).
 The first two items listed above are pretty clearcut; requirements will become obvious very
early on in the design of the tasking software. However, dealing with them is not such an
easy aspect, as illustrated in fig.5.

Fig. 5 Overall transaction requirements

This shows a three-task combination which performs some system function or transaction
(the particular structure is representative of multi-rate control systems, where various tasks
operate at different rates). Our primary concern is to ensure that the transaction as a whole
meets its requirements; it isn’t just a case of the individual parts being satisfactory. Here the
transaction requirements are period (Tpt) and deadline (Tdt), these coming from real-world
performance requirements. With this starting point the designer is faced with somewhat of a
juggling problem concerning the allocation of times to individual tasks. Difficulties are
further compounded because tasks must execute in a particular order.
 Unfortunately, where precise results are needed, mathematical predictive techniques are
limited to simple cases. RMA in itself doesn’t appear to help much. Paper and pencil
generated solutions are likely to be tedious and time-consuming and – in large systems – not
even feasible.
 Now to turn to access control of shared resources (mutual exclusion), a most important
topic. Designs must be carried out in a rigorous manner, otherwise serious problems can
ensue (if you don’t believe this, I recommend that you read Nancy Leveson’s account of the
Therac-25 fiasco [4]). Mathematical analysis of such interactions tends to be limited to
somewhat simplistic situations (perhaps realistic structures are too difficult to analyse?). The
basic idea is that we add the time for which a task is blocked to its computation time when
calculating processor utilization. For example, suppose that Task A is found to be blocked for
a time Tb, then its total time allocation becomes:

(Tca + Tba)

Thus its utilization of the processor becomes

Ua = (Tca + Tba) / Tpa)

10

So far, so good. However, it does require that we get accurate figures for blocking times.
Unfortunately, where resource sharing occurs, these aren’t always easy to come by. This is
particularly the case where unbounded priority inversion occurs (a low-priority task blocking
one of higher priority for an indeterminate period [3]). Such behaviour makes it extremely
difficult to predict blocking times; worse still it can produce serious performance problems
(see ‘What really happened on Mars?’ [5]).
 One way of dealing with this is by use of the so-called ceiling priority protocol [3]. Here
each resource is given a priority equal to that of highest priority task (say Task H) which uses
that resource. This is defined to be its priority ceiling. All other tasks having need of that
resource must, by definition, be of lower priority. Should one of these (Task L) acquire the
shared item, there is no change in its priority. However, if it suspends whilst holding the
resource and Task H then tries to use the resource then:
• Task H is suspended.
• Task L has its priority raised to that of Task H and is set running.
• Task L finishes with the resource; it then has its priority reduced to normal.
• Task H preempts Task L and acquires the resource.

As a result a high-priority task has to wait at most for only one lower-priority task to finish
using a protected resource. Blocking time calculations are very much simplified.
 Rate monotonic theory has been extended to cover this situation. If the maximum time that
such blocking can occur is Tb (i.e. when the low-priority task has locked the resource), then
the modified RMS algorithm is:
n
Σ [(Tci/Tpi + Tbi/Tpi) ≤ n (21/n – 1)]
i = 1

 A number of operating systems and language task models have incorporated the priority
ceiling technique (e.g. the protected object of Ada 95). With it, however, comes an overhead
as the system must dynamically:

• Keep track of all suspended tasks.
• Note and record the state of each shared resource.
• Change task priorities if and when required.

For hard, fast systems the time overhead may be significant. Unless these are included in the
blocking calculations our mathematical predictions will be very suspect indeed.

5. Dealing with aperiodic tasks.

We now come to what is perhaps the most unsettling factor as far as task scheduling is
concerned: the presence of aperiodic tasks. Aperiodic (asynchronous) tasks are part and
parcel of the embedded world, being activated by the generation of hardware interrupts. By
definition the arrival of these cannot be predicted; they can be described in statistical terms

11

only. So how then can we include them in a deterministic schedule? In the RMA world two
techniques predominate:

• Transform aperiodic tasks into periodic ones (using polling techniques).
• Provide time to deal with aperiodic task activations within the timeframe of the schedule

(the aperiodic server) [3].

Let us see how these work when applied to an example task set, table 1.
Task Type Response Time

(milliseconds)
Computation Time
(milliseconds)

Period
(milliseconds)

A Periodic 20 10 100
B Periodic 18 15 120
C Aperiodic 110 - Deadline 5 -
D Aperiodic 5 - Deadline 2 -

Table 1. Example task set.

(a) Polling

Instead of using interrupts to trigger tasks we poll I/O devices (under software control) to
establish their status. The really difficult question to answer is: how often? Regrettably there
is no single answer; it all depends on the application.
 For the moment assume that we can produce believable figures. Using these, modify table
1 to show all tasks as periodic ones, table 2.

Task Type Response Time
(milliseconds)

Computation Time
(milliseconds)

Period
(milliseconds)

A Periodic 20 10 100
B Periodic 18 15 120
C ‘Periodic’ 110 5 150
D ‘Periodic’ 5 2 250

Table 2. Rate monotonic scheduling – Example task attributes.

This, it can be seen, has assumed that the period or ‘interval time’ of task C is 150
milliseconds. For task D 250 milliseconds has been chosen. Of course we still have to
decide on the priorities of the aperiodic tasks. The simplest way is to use the interval time to
calculate priorities, as shown in table 3, column 1.

1
For aperiodic tasks:

• Period ↔ Interval Time
• Priority ↔ Periodicity

1
For aperiodic tasks:

• Period ↔ Interval Time
• Priority ↔ Periodicity

2
For aperiodic tasks:

• Period ↔ Response Time
• Priority ↔ Periodicity

2
For aperiodic tasks:

• Period ↔ Response Time
• Priority ↔ Periodicity

3
For aperiodic tasks:

• Period ↔ Interval Time
• Priority ↔ Deadline

3
For aperiodic tasks:

• Period ↔ Interval Time
• Priority ↔ Deadline

12

TaskPeriod Priority
Order

TaskPeriod Priority
Order

TaskPeriod Priority
Order

A100 1 A 100 2 A 100 2
B120 2 B 120 4 B 120 3
C150 3 C 110

(Td = 110)
3 C 150

(Td =110)
4

D250 4 D 5
(Td = 5)

1 D 250
(Td = 5)

1

Table 3. Rate monotonic scheduling – Handling aperiodic tasks.

If we set all tasks ready at time to, then task C will complete at (to + 30) milliseconds – well
within its deadline. Unfortunately task D won’t finish until (to + 32) milliseconds, much too
late. This problem is not just restricted to aperiodic tasks; it is a consequence of treating
period and deadline as being the same thing. We have already looked at this, but it’s worth
bringing it up again in the current context.
 Improvements can be attained by using a different set of rules in defining the ‘period’ of an
aperiodic task; use the task response time (or deadline – they’re the same in this case) as the
period (column 2, table 3). In this particular case the schedule will work, even though task D
is activated every 5 milliseconds. Unfortunately such high-rate operation dramatically
increases processor utilization; furthermore, in many cases it may generate infeasible
schedules.
 A technique developed to overcome this drawback is the deadline monotonic scheduling
policy. With this, aperiodic tasks are treated as periodic tasks as described earlier. This
defines their periodicity (column 3, table 3). However priorities are based on deadlines (for
periodic tasks, remember, period and deadline are the same thing). As a result task D gets
activated only every 250 milliseconds, but when it does it takes on highest priority. As a
result it is guaranteed to run to completion without being pre-empted.
 Polling, as a technique to handle random inputs, has a number of drawbacks:

• Excessive overheads – polling whether or not an event occurs.
• Staleness of acquired data – time between an event occurring and it being recognised by

the software.
• Skew between input signals – simultaneous event signals may, as a result of the polling

action, have significantly different time stamps.

Alernative methods such as the periodic server may provide a much better quality of service.

(b) The periodic server.

 The periodic server attempts to alleviate these problems by not polling; instead it builds time
into the schedule to handle random inputs should they occur. One technique allocates a fixed
amount of processing time in a predefined time slot for the aperiodic tasks. Once this is used
up no further aperiodic processing can be done until the beginning of the next time slot.

13

 By incorporating the periodic server technique, schedules can be analysed mathematically
for feasibility. Which is fine as long as you can:

• Defer the handling of inputs should the current time allocation has run out.
• Allow for the overheads involved.

5. Mode changes and related factors.

We’ve come a long way from the original concepts of rate monotonic priority assignment of
Liu and Layland. The basic assumptions, as you’ve seen, don’t hold up in the real world of
embedded systems, especially fast, critical ones. Various extensions and modifications have
been developed to deal with real-world requirements; these, to use a cliché, succeed to a
lesser or greater extent. Now we’ll look at something which, in large systems, introduces
much complexity into task scheduling: system mode changes.
 Take the case of a computer-based integrated missile defence system on a naval vessel.
Most of the time it will be in search mode, switching into tracking only if a potential threat is
identified. Following this is the target acquisition and lock-on phase, leading into launch and
then guidance modes. Thus the functions (here being synonymous with transaction, fig.5)
performed by the system are many and varied. However, those executed at any particular
time depend on the mode of operation. Some will always be performed, some will apply to a
number of modes, while others may be carried out only in specific modes.
 A second factor is the importance of the function. Here they are categorized into vital,
essential and desirable groupings. Vital functions are those which, if they fail, lead to
physical damage, injury or loss of life. Essential ones are those which are needed to ensure
correct functioning of the system. The third group, desirable, provides convenience facilities;
failure is inconvenient but not mission-threatening.
 A third major factor is the likelihood of specific functions being activated during
operations. The groupings used here are definite, probable, possible and unlikely (a
somewhat arbitrary choice, it must be added).
 There are also cases where functions must not be carried out in particular modes (I know of
a case where the leading-edge slats of an aircraft were deployed at Mach 0.9. As a result the
wings were torn off and all five crew members killed). These serious error cases need to be
explicitly identified so that defensive measures can be implemented in the software.
 This information needs to be collated and recorded so that the overall multitasking
performance requirements can be established. Begin at the system level design by defining
all modes together with their relationships, as for example:

Mode Listing
Current Mode Event Response Next Mode
Search Mode Target Detected Activate Tracking Track Mode

Next, all functions, together with their attributes, need to be identified, e.g.:

14

Function Listing
Function Type Tp Tc Td Importance Likelihood
Radar Search Periodic 50 mSec. 2 mSec. - Essential Definite
Missile to manual Aperiodic - 1 mSec. 200 mSec Essential Possible

Following this, functions need to be allocated to modes, viz:

Targeting Mode Functions
Function Type Tp Tc Td Importance Likelihood
Designate Target Aperiodic - 2 mSec. 40 mSec Essential Definite
Target Tracking Periodic 50 mSec. 4 mSec. - Essential Definite

Using this information the processor workload during individual modes can be derived:

Tracking Mode – Processor Workload
Function Type
Function Importance ↓

Periodic Aperiodic Total

Vital 0.1 0.05 0.15
Essential 0.6 0.1 0.7
Desirable 0.05 - 0.05
Totals 0.75 0.15 0.9

As the processor tasking model is developed, it must be reconciled (both functionally and
temporally) with this system-level information. This will involve the evaluation of all
operational scenarios, especially from a time point of view. Only then can the task schedule
effectiveness be deduced. A somewhat more onerous job than performing simple rate
monotonic analysis, methinks.

6. Closing comments.

You might, at this point, feel this has been to some extent an RMA-bashing article. Not so.
It’s main target has been those who (deliberately or otherwise) mislead you into thinking that
rate monotonic techniques will solve your problems without any BASE input (BASE: Brain
Aided Software Engineering).
 Rate monotonic scheduling, deadline monotonic scheduling, basic cyclic scheduling, etc.:
all have firm foundations and provide a good basis for multitasking design. They bring
rigour and coherence to the development process, and should be used as and when
appropriate. But it can be seen that these form the foundations; a considerable amount of
further work is needed to erect the building. A point often overlooked is that these techniques
have an Achilles heel; everything depends on the correctness of the time attributes (i.e.

15

computation time, deadline, period). And note: nothing has so far been said about clock
speeds, interrupt latencies, context switch times, and other overheads.
 For anything in the least bit complex, tool support is essential to fully examine all aspects
of system behaviour. The academic community recognized this many years ago, producing
such tools as part of various research projects [6,7]. More recently commercial products
have appeared. Some are provided by RTOS vendors as an integrated part of their
development environments; others, such as PERTS [8], are vendor-independent.
 One further point; the next time someone tells you that their RTOS is ‘fully deterministic’,
you should have sufficient knowledge to challenge such statements (at present only one
scheduler delivers fully deterministic behaviour: the simple safety-critical non-preemptive
cyclic scheduler). And even that has to dispense with caching, pipelining, DMA operations
and application-level interrupts.

7. References.
[1] Liu,C.L. and Layland,J.W., ‘Scheduling Algorithms for Multiprogramming in a Hard
Real-Time Environment’, J.ACM, Vol.20, No.1, 1973, pp 46-61.

[2] Rekasius.Z.V., ‘Digital Control with Computer Interruptions’, Proceedings 1985
American Control Conf., Vol.3, ISSN 0958 4869, pp1618-1621.

[3] Sha,L. and Goodenough,J.B., ‘Real-Time Scheduling Theory and Ada’, IEEE Computer,
Vol.23, No.4, April 1990, pp 53-63.

[4] Leveson,N.G., ‘SAFEWARE – System Safety and Computers’, Addison-Wesley
Publishing Company, ISBN 9 780201 119725, 1995.

[5] Jones, M., ‘What really happened on Mars’, http://research.microsoft.com/~mbj/
Mars_Pathfinder.html

[6] Cooling,J.E., Calinov,I. and Korousic,B., ‘Animation prototyping of real-time
multitasking systems’, Proceeding IEE Serta’93, September 1993, pp125-130.

[7] Audsley,N.C., Burns,A., Richardson,M.F. and Wellings,A.J. ‘STRESS: a simulator for
hard real-time systems’, Software - Practice and Experience, Vol.24 (6), June 1994, pp
543-564.

[8] PERTS, Tri-Pacific Consulting Group, Alameda, CA 94501.

http://research.microsoft.com/~mbj/Mars_Pathfinder.html
http://research.microsoft.com/~mbj/Mars_Pathfinder.html
http://research.microsoft.com/~mbj/Mars_Pathfinder.html
http://research.microsoft.com/~mbj/Mars_Pathfinder.html

